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Abstract.

“he behavior of the electromagnetic field in an ideal
c=.itv with oscillating bouncdary 1is considered in the
rezc-znce long-time limit. The rates of photons creation
“<rom vacuum and thermal states are evaluated. The squeezing
cosfficients for the field modes are found, as well as the

backward reaction of the field on the vibrating wall-

i. Field Quantization in a Cavity of Variable Length

Here we give the results of our recent investigations relating
to *he behavior of the quantized modes of the electromagnetic field
inside a rescnator with oscillationg walls. We consider the electro-
magnetic field in an empty resonator formed by two ideal conducting
plain boundaries x =0 and x =L{t>, and restrict ocurselves to the
linearly polarized mcdes with the electric vector parallel to the
boundaries. Then the field car be described by means o©f the single
sczalar equation for the corres:onding'com:ohERt of the vez-tsc- poten-
tial with the nonstationary boundary conditiors £i] 'we assume ¢ = 1!}

Prp ~ P T Gy, 0 < x < LJtl; pll,t) = o(ldt>,t) = G 1)
The goanr*tizat:zon srocedure in this case was proposec by Mcore [13.
TArotrer approach including the case of a massive boson scalar field
waz investigated in ref.[2].) The starting point of Moore’'s method is

the follicwing choice of the furdamental solutions of eg. (1),

W fa,t) = (qnn)'“q{%xp[-LnnR(t-x)J - Exp[—iﬂnﬁ(t+x)]}, (2}

N
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furction R(Y) being a solution of the functional equation
R[t+L(L)] - R[1~L(t)] =2 )

In tre staticnary case LCt2 = LO the sclution of eqg. (3} is triwvial:

O

EO(FY = E/LO. Thus meode functions are usual standing waves

sO -1-2_ . o et € ¥ ra
¥, (x,t) = v(mn) sin{nx Lo)enp( LﬂhL'LG)- (4)

Ar approximate solution of (3) for a slowly moving wall was found 1in
[1J. But in the most interesting case of the parametric resonance

=

Lty = L°[ 1+ g-sin(wqt)], w, = ngoL s @ = 13,2004, |g] « 1 (%)

that solution appears val:d orly for not very large values of time

zatisfying the restriction sctﬁLo « 1. The correct asymptotic e:pres-—

sion for the function p(t) = RE(t) — t in the long-time limit fwt » 1
was cbtained in refs. [3-5] (L =¢ =1, Z=exp[(—1)q+1-nqct])=
Ktd = - (2100 Im 1n[1 + F + exp(tnqt)(l—f)]}, (6)

7~

For “he motionless walls the field operator ¢ in the Heisenberg

cicture can be developed aver the set of functions w;wfx.tk:

S i o= AR - ) AL R - T * 2 ¥1 =
W, b Z{b“wn Cx,tD + bntwn (x.t)] }, [ bn,bmJ S (7)
If the right wall oscillates only during the time interval ¢ = ¢t £ T,

then for t » T the field operator tan be written in two forms,

o FaY Ea S ’_ ’ _ Fal . 0) l-\ -+ R 0) »
L Z{bnwn * bnwn} - Z{am%n * um[wm ] }' (8)
where wn(x.t) is the solution of the nonstationary problem (1) coin-

'at t < 0. It seems reasonable to assume that measur-—

ciding with w;°
ing devices react to steadv-state standing waves (4) which are wave
functions of physical quantum states possessing definite energy

values. Then just the set of cperatoré (&,d+)

has the physical sense
at ¢+ > T. Since all gquantum properties of the field were defined with
recpect to the state determined by the set of operators (5,£+) {which

¥

were "physical” ogperators fcr t < 0 ), we have to expand the "new

. el

+
operators f(a,a ' cver the "ocld" ones (b,bd i,

N "~ ~ .
a = Z{b_a + 5 a" }. (9)
m n"oYun i Yun

To calzulate the Bogoliubov coefficients “m and ﬁnm one should take

intg account that both systems of mode functions (2) and (4) consti-
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c-yzlete orthonormal sets with respect tc the scalar product [13
LD
* * -
(wyax) = —Lfax{wxl - ¥ }, (XLEOX/O:? (10
0

T.tE

Tuor the fpllowing relatioms can be obtained [3-%3,

[y
b a

t-L -1
f )

o toL +1
TUR ) e o : R
= i(m;n)‘“zfdx-eup{—tn[np(LoxJ +n ¥ mx)]},
d

~alcula*ions of these irtegrals were performed in [Z-%13.

21 result for g = 2r is as folliows (&5=oF/nry,

sin[nfzrnétm)fzr] sin[n(ntmij

exp[in(ntm)(l—l!?rﬁl.(12}

m!2rndTm) sxn[n(n:m)/Zr]

]

wodul: sauared cf the Fogoliuhov coefficients can be obtalned,

~e mair resorarce case of r=! the following expressizr for toe

-
L

B! m [1 - (—l)m-cos(ﬁnné}]

~ [+ (=) mFn ] (13
2 .rmz (2nS = m)

2. Rates of Photons Generation
The t-tal rumber of photons created in the m—th mode from the

vacuum state tc the time instant t equals

Q ) o= -
Fm = <C|amamlc. Elﬁnml (14)
Omitting the detailes of calculations given in [3-50 we present the

final result r = 1)

P, = tma®) " [In(m/28) - (=D In(1/2n8) ] (15)
Sirze in the case under study é(t)=exp(—n::)/n, we get the fcllowing
rate of photons generation in the m—th mode when the wall v_brates at

t~e t*wice frequency of the first resonator eigenmode for si:xl:

dF /dt = (e/mm) [ 1 - -0™ 7. (15
Tr1s result is valid in fac= orly for not ver. .arge nunrers m. Since
.+~ rzal situstions we shouls limit time t By the resonator rslaxatian
time t (due to tre dissipatiocn irside walls), the maximum number c*

phctone generated in the m—th moce eguale approximately

eV
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-~

Fﬁax N unzmg_’{2£Qfm3fm + Q(ln(m+1))}, (17?

w==Eve ia. ie the gual:ty factor of the resonator’ s m—-+% mode.
Cormuzss (1SY-(17) essentially differ from the results of

~2*f=2..4,72, where the problem of photons creatior in a resonatcr with

sZ:lia%ting ideal mirror was also considered. Howevser the authors of
tra* fpapers did not take into account the deep reconstruct:cr cf tk=
*.1ela modes inside the resonator in the long-time limit. Therefore
tke ra+te of photons generation obtained in [é6] and (7] was proport:o-
sl 1 esssnce to (Euh)z, whereas gur ‘ormulas show that this rate ics
zroporticnz2l to the f;rst powar of the product cwq- The quadratic law
P w2 is Qalid only in the short-time approximation under the=
F_ w1, as was showr in [8].

€ initie! dersity matrix of the field corressonds +a +he
Elanzk dist-ibuticn with finite temperature. ther the average number
tizonal "the

rmal” quarta created ir the m—th mode egusis 4]

ef =p - 7 awlin 20 s 1T feup rsey - o
m m mn L e | Rm o

kL
3
. - n e ep (/@) + 1 (g
=2t 1 - 0™ 2 1n + OXZE/ D,
e DY -
j=1 exp (/e 1
where @ =¢TLo/nhc, ® 1is Boltzmann's constant, 7 - temperature.

The “i-al number of “"thermal” photons does not depend on time-
Moreover, 5" the even modes it is almost zero up tc the terms of the

order of Z&/m. In the low temperature limit & « 1 and *or ct:1 [4]

- -1/@ w g
AP = 4(n%mw - n” ] e 176 ., pues, (19
m m
In the high temperature lim:t one gets [42

aF = t@/2m [ 1 - -1 ™ ] + o@nze). (20

T £

<re resorator nas a finite guality factor OCm> in the m—th mode,

tre- tre temperatur-e ccrrecticns can be neglected provided

& 4:0(mjffnamu £Q 1. (21
O
ce
e
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3. Squeezing Coefficients
New let us consider variances of canonical coordirates and

rome-+s operators (quadrature components)

- 2y -~ -~ P
+ AT = t(a - ~AZ. (22)
m (am dm) ' pm, ( T .r.] <
T¢ ghs 1--*ial guantum state of the fielcd was vacuum or coherent one,

t-2~ +-~z *3llowing general formulas are valid [83,

1 2 * —
- + + (1 -f3) Ry
% x 2 L Iﬁnml ALAL SN hﬁm }’ “
m m -
@ =+ gll5,,|1° - Reta, - 124
£ p 2 ruR nm
m m e
-
= i A3 ) (25
“ x p : Im am’n f?‘un
m m n
Tm k=g case of =2 we have [4,52
- m ) A .
o Ttew) = % - (nzm) ‘{ 1 - (-1 - (mm) -si (f1pd) }, (26
T v -
wker-z =i {x) means the integral sine function:
x
si(x) = Jdt-sin(t)/t. (27?2
b ¢

72 zee that the variance is always less than {ts value i tThe wvacuum

o=t /2. Th:s means that the field occurs in *the sgueezed

-t
L1

it
n

0

The reliative sgueezing coefficient K = {- 20, assumes the
mim
ma=imum value X ,=0.22 for m = 1. For large m » 1 this coefficient

in
[
T

slowly dec-eases according to the asymptotic formula

K = 2/ (nPm) . (28)

The zanorical momentum variance increases in time according to

*“e same _aw as the number of created quanta (15). The general depen-
dencee =f variances on time are rather intricate. As was shawn in
I€1, in the short time limit £t « 1 there is a small squeezing in tre
sanstilcal momentun varidance: o X %(l-nst) (for m = 1). Meanwh:le inr

pe

the long time limit the situatior is guite opposite: there 1is some

aueesirg 5* the carorical ccordinate, and urnlimitedly growing ir

I_Il

t:me variamce of the caronical momentum. As tc the ccvariance of the

cordinate and momentum (25}, it turrms out to te =2gqual to Tero U o

-1 . . .
grms of the order of (st) . THis mesars that the field occurs ir

1]

R
-
L]
*

c.eeszed but uncorrelated state. Ncreitteless, this state is rot =

1)
i
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-1-i=um uvncertainty state, since C!ﬁpd'_\'\_ 1 when &gtile This is
o ax

ewzlarned by a strong internode :interaction.

4. Back Reaction on the Oscillating Wall from the Field

z well ktnown that vacuum fluctuations of electromagnetic

“jels v=zult in an attractive Casimir’'s force between uncharged
nfuztimg plates [9-11]. The general expression for the fcorce precss-

nz tte mo. mg wall { more precisely the Tufcomponent of the erergy-—

~omzrt_ 1 tg-sor of the field ) was calculated in [10,123]:

F = =0 glt=-Ldtd> + glt+ltdo> 1, (29)
where functiaon gCy) is expressed through R-function introduced accor-
ding to ege. (2) and (3) as follows { in dimensionless units; remind

-

tra* we concider the case of "one—-dimensional" electrodyrnamics 1},

t Ruo c'y_') 3 R"C'y_') 2 ”2 2
yy = - = —_— _— LRy . (30
AR adn R*CyD 2 [ R'Cw2 ] Tz (R Cy21 2

In the —ase of motionless wall (29) and () lead to the known

exgression for Casimir’'s force in one dimensior

F'O = —phe.24L ; (z1)

The co-rections to (31) in the limit of small velocities of the wall
{with respect to the velocity of light) were zalculated ir [1T1l. The
additional force appears attractive and propo~tional to the sguare of
wall’'s velocity. Here we calculate the same force using the long-time
asymptot:cs of F-function (6). Since .dt/dt] X |exr] << ¥ , we can
differe~tiste R-function with respect to time believing parameter ¢

to be co~cstant. Then the first three derivatives are as follows,
RVCtD = SFICLD, (32)
RYCt) = 2rCt-t2 ng sincCngty ¥ced, (=)
Ferced = gret1-roenga? [(1+82)casc'nqt.‘)+c't—(2.3 [t +5lr¢.zc'ﬂqt.'-’]]\l"t:'l). (Z4)

> = [1 + 22 4 o1 cés(nqt) ]" (T
Since the force exhibits rapid oscillations, it seems reasonable to
average all time dependent functions contained in (35) over the
period cf oscillations T' = 2&-g. All integrals can be calculated

exactiy with the aid of formula (£14]1, eq.2-5.16(22))
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” . 241-2 i
ZoE fnat n (az - 57 - 1"
dw = - - =23
J a + booslal [az tz)t 2 2
C
gz =mzT we have
R <% 2 - i - hat Rl
“.F. e é (\*{ - " m
coRn R 2%a = ok Rt = b cngoloresTh-an, (T3
=
Tmsg-ti-z these empressions into (29) and (30) we get finally 1@rn
#ime-ziotless urnite
n 2 1 2y -1
c s = = e - - (Rt~
SRR R TR S TR )
Tor g o= L tr:z formula coincides with (Z1). Note that this is ncot thre
vzz--z--¢ —aze (the minimal resorance value is g = ), so that pho-

fta-z are =m= created inside the resonator, and the force conserves

itz wacoalm value. For ¢ = 2 we have not attractior, but ar expdnern-

‘rcreasing pressure on the oscillating wall due tc the cra2a-
~.-m 2*f -eal phcoctons in the cavity. By the way, formula (I9) ERows
cigtinctly that for t + o the physical results do not depend or the
gigr o the parameter &£ characterizing the dimensiorleszs amplitade <

wsll'e vibrations, since +F» is proporticnal to expllzsingt..

5. Discussion.
Let us summarize the main results. We have prezented a new solu-

tion for mocde functions of the electromagnetic field irsize ar ideal

(2]
o+

cavity with oscillating wall in the long-ti-z +-esoranze 1:mit.
appears that the field modes structure is signific ntly cranged 1

n
tFiz ligit irm com-arisor with the case cf mctiornless Gbourdaries. It

:c ==ss- Z:istinctly 1f one compares, e.g., the time derivati-es of
c .Y : . . .

Syrze-z-z EU(FY and R(F) giver by (&): ir the motiorless case one
gets u-_*. in dimensionless units), whereas 1n the long—-%im=z resc-

e _:~m:* the corresponding value appears much less than urity *or
I instants of time excepting those when cosingt) is very
closs == =! i(zee eqg. (I2)). Fhysically this char~ge of the fislid m3les
etrLucture marifests itself in the transition from the quadrai:c law
e generatior in the short-time approximation to the li-esar

n
law i~ the lorg-t:me asvmrtotics. We have established also the gossl -

onGE
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l:ty of obtaining some sgueeczing {although rather moderate) :n  tre

~esorance modes.
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